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Exploring Group 14 Structures: 1D to 2D to 3D
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Introduction

A starting point, and questions : The role of dimensionality
in the structure of any material is fascinating. The complexi-
ty that ensues from variation in dimensionality, and from
structural alternatives, is rich in emergent properties even
for elemental structures. Witness the splurge of activity in
two-dimensional carbon, graphene.[1] The geometrics and
energetics of one-, two-, and three-dimensional Group 14 el-
emental structures at P= 1 atm is the subject of this paper.

But we came to investigate to this very general problem
from a rather different starting point. In a fascinating group
of compounds, the Au2MP2 (M =Hg, Tl, Pb) phases, Eschen
and Jeitschko found sensibly one-dimensional, zero-valent
Hg, Tl, or Pb chains.[2] We took these out of their inorganic
matrix (theoretically), and studied them on their own.[3] To
our initial surprise, the one-dimensional (1D) chains (we
focus on Pb for the moment) did not want to remain linear,
but instead kinked. Further deformations to spirals were
found to be thermodynamically more favorable. Two-dimen-
sional (2D) networks were at lower energy, and three-di-
mensional (3D) ones still lower, with interesting differences
depending on crystal structure type.

We should not have been surprised. In a nutshell, solid Pb
“wants” to be metallic, close-packed face-centered cubic
(fcc) in structure, and thus 12-coordinate. The simplest 1D
and 2D structures don’t allow this and as a result their
energy is higher. For Pb, within a dimensionality (imposed
by a human being, the calculator), the more nearest neigh-
bors (up to the optimum of 12) a geometry allows, the lower
energy it will be. This explains the preference for tight heli-
ces over linear chains.
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Let us now step back, pretty far back, from this specific
starting point and consider the energetics of elemental struc-
tures as a function of dimensionality. Group 14, crossing as
it does the metal–nonmetal boundary, is a good place to ex-
plore this problematic. The questions that arise, broadly
phrased, include, “What are the relative energies of various
stable and metastable structures in one, two, and three di-
mensions? Why do they come out the way they do? What
are the magnitudes of the potential energy barriers (activa-
tion energies) separating the various minima? How do the
minima and barriers vary across the periodic table? What is
the relationship of the relative energy of the various struc-
tures to the solid to liquid transition in these materials?”
These questions are made very much real for carbon by the
synthesis and characterization of fullerenes, nanotubes, and
graphene sheets, several classes of low-dimensional carbons.
Will one find such structures for Si, Ge, Sn, and Pb? Will
they be kinetically persistent?

We will offer some chemically mediated answers to these
questions, supported by theoretical computations. All of the
work reported here is at 1 atm. In later work we extend
these considerations to covalently and ionically bonded
binary compounds, and Group 14 elements at elevated pres-
sure.

Structural choices : What structures to consider? The 3D ge-
ometries are the easiest to choose—they should include
most typical crystal types and they should offer a range of
coordination geometries. Clearly, C will want three or four
nearest neighbors (graphite and diamond polytypes), at
least at ambient pressure, while solid Pb, being the metal
that it is, will seek out 12 nearest neighbors, fcc. Figure 1
shows the set of 3D structures we chose to investigate, in
order of increasing coordination number (CN)—they in-
clude graphite (two polytypes; 1, -ABAB- stacked, 2,
-AAAA- stacked), diamond (3), b-tin (4), simple cubic (5),
simple hexagonal (6), body-centered cubic (bcc; 7), face-
centered cubic (fcc; 8), and hexagonal close packing (hcp;

9). Of course, there are other elemental structures; these
nine should offer enough range in CN (3–12) for a trend for
each element to emerge.

For reasons that will become clear, we arrange these
structures in order of increasing CN, which is specified
under to the structure number. The notion of coordination
number is inherently ambiguous. Is graphitic structure 1ACHTUNGTRENNUNG(-AAAA-) three or five-coordinate? That depends on the
ratio of in-plane and out-of-plane distances, and our “cut-
off” for defining a distance as bonding. We will return short-
ly to the problems hidden in the seemingly simple concept
of coordination number. For the moment we term structure
1 as 3+ 2 coordinate, specifying the number of nearest and
next-nearest neighbors; though, as we will see, next-nearest
neighbors have a way of becoming nearest ones. The same
uncertainty (what coordination number characterizes an
atom in this structure?) rears its head for many structures.

For the 1D and 2D structures some highly symmetrical
geometries are evident (just satisfying our aesthetic preju-
dice for simplicity), such as a linear chain, a square, and a
honeycomb net. Beyond these, the choices are somewhat ar-
bitrary. The 2D starting geometries shown in Figure 2 in-
clude the honeycomb net or graphene (10), two-layer graph-ACHTUNGTRENNUNGenes (11 and 12), the square-planar sheet (13), kagome net
(14), wavy or corrugated square sheet (15), “cubic” planar
or double square sheet (16), rhombohedral planar or trigo-
nal prism sheet (17), and a triangular sheet (18).

The 1D starting geometries shown in Figure 3 start simply
enough with a linear chain (19), then branch out into wide
angle zigzag (20), ladder (21), (3,3) single-walled nanotube
(SWNT) (22), extended spirocycles (23 and 24), small angle
zigzag (25), helical (26 and 27), hexagonal pipe (28), and
cubic chain (29) geometries. Again, these are arranged in a
rough order of increasing coordination number.

Actually, we modeled of the PAW-LDA (computational
details DFT calculations we use are given in the section on
Computational Methods) 42 possible structures for C, Si,
Ge, Sn, and Pb, of which the 29 shown in Figures 1, 2 and 3

Figure 1. The nine different 3D starting geometries for C, Si, Ge, Sn and Pb.
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are a subset. All optimized structures, bond lengths, and en-
ergies can be found in the Supporting Information. All of
the considerations in this paper are at ambient pressure. In
a future paper, we will discuss how the elemental landscapes
change at elevated pressure.

Coordination number (CN): One should not wait any longer
to address explicitly the useful, but fuzzy, concept of coordi-
nation number. There is usually (but not always[4]) little am-
biguity in a 0D object, such as a molecule—C in CH4 is
four-coordinate, S in SF6 six-coordinate. However, in a 1-,
2-, or 3D structure one has more than one distance from a
given atom to its neighbors, of course. One can plot a histo-
gram of distances from symmetry-distinct atoms in a struc-
ture, shown in Figure 4a for a hypothetical square lattice of
Sn atoms and Figure 4b for the real b-tin structure.

Such histograms, most of the time, have substantial gaps
after the nearest neighbor contact, providing one possible
definition of CN; but things are never simple. So in a 2D
square lattice, one, of course, has a gap between a and

ffiffiffi
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a

(a is the atom–atom separation), as shown in Figure 4a (the
first two bars, respectively). Notice, however, a larger gap to
the next distance, 2a. Should we call an atom in a square-
planar lattice four- or eight-coordinate? It would be pretty
silly to call it eight-coordinate, but which spatial gap in the
histogram is larger?

In the b-tin structure, 4 (the bold-face numbers, here and
subsequently, refer to the structure numbers in Figures 1–3),
one has a flattened tetrahedron around a given Sn atom,
with Sn–Sn 3.00 �. Close to that is the separation of the ref-
erence atom from two further Sn atoms at 3.13 � (shown in
Figure 4b, the first two bars). It would be a mistake to call
Sn, in the b-tin structure, four-coordinate, it really is closer
to six-coordinate; CN= 4+2 might be a fairer description.

Sometimes the effective CN may be a function of the ele-
ment chosen, given one and the same structural type. Con-
sider the graphite polytype in Figure 1 (1), a simple hexago-
nal -AAAA- stacking of honeycomb layers. As we men-
tioned above, an atom in this structure could be called 3+ 2
coordinate, in which the additional two contacts are perpen-

Figure 2. Different 2D starting geometries for Group 14 structures.

Figure 3. Eleven different 1D starting geometries for C, Si, Ge, Sn and Pb structures.
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dicular to the honeycomb. For carbon the computed (not far
from experimental) vertical contacts are 3.40 �, the ones in
the honeycomb net 1.42 �. It makes sense to call each C in
3D graphite three-coordinate, rather than 3+ 2; even the
next contact within the plane (�2.5 �) is shorter than the c-
direction separation. But there might be instances for which
the vertical contacts in this graphitic-type structure shorten,
and/or the horizontal ones lengthen. For instance, this is the
case for Pb, for which the computed distances in the above-
cited graphite polytype structure (not that it�s particularly
stable) are 3.04 � horizontal and 3.12 � vertical. Here, 3+ 2
or five-coordination for Pb makes sense.

In addition there might be intermediate cases in which it
is just best to throw up one�s hands, and show a histogram
of distances. Actually, Santiago Alvarez and co-workers
have developed a very useful system of continuous shape
and symmetry measures[4] (taking off from ideas of Avnir[5])
for studying just such cases of intermediate coordination.

Some background chemistry : The chemistry of C, Si, Ge,
Sn, and Pb would take volumes to abstract, but perhaps it is
worthwhile to summarize some obvious trends, as far as co-
ordination number is concerned.

Carbon, of course, wants to be four, three, or two-coordi-
nate. It is p-bonding that allows kinetically persistent low
coordination in organic molecules. That p-bonding, for vari-
ous reasons, does not play a stabilizing role in the chemistry
of silicon and lower Group 14 congeners.[6] This is a point to
which we will return below. Si occurs primarily in com-
pounds with coordination number four, but excursions to co-
ordination number five or six, and even (rarely) eight are
very well known in discrete Si-containing molecules.

Around Sn one crosses the metal–nonmetal borderline at
1 atm. The structure of b-Sn shows six-coordination, and
many discrete molecules of Sn are six-coordinate. At Pb one
has a typical 12-coordinate metallic structure. However, dis-
crete molecules contain Pb in a variety of coordination envi-
ronments, from four up.

Later in this paper we will remark on a not unrelated
matter, the average coordination number as derived from
the radial distribution function of the liquid forms of these
elements.

Results and Discussion

Overall energetics : The calculated energies of 29 structures
for C, Si, Ge, Sn, and Pb are shown in Figures 5 and 6.
Figure 5 plots the absolute formation energy, DEf =

(Etot�N � Eatom)/N in which N= number of atoms in the unit
cell, of each structure, per atom; Figure 6 plots the relative
formation energy, per atom, relative to the most stable com-
puted structure. Both display modes shown have their ad-
vantage.

It will be noted that some structures lack an entry. What
this means is that the optimization beginning in that struc-
tural type led to a different geometry. In selected cases we
will note when that happens. It may also be that a given
entry (especially those of very high energy relative to other
geometries), may not be a local minimum, but simply that
the optimization has kept it in a specific space group.

Carbon : Clearly, carbon (open circles in Figures 5 and 6)
has the most variation in energy between structures featur-
ing different coordination, with a strong preference for
three- or four-coordination (graphite and diamond). The 3D
graphite and diamond formation energies are very low (by
more than 2 eV per carbon) compared with the other
carbon 3D latACHTUNGTRENNUNGtices. When carbon is optimized starting with a
b-Sn lattice, 4, it rearranges into the diamond structure, 3 ;
thus there is no entry for structure 4 in Figures 5 and 6. The
computed diamond structure is more favorable than both
graphites ACHTUNGTRENNUNG(-ABAB- stacked structure, 1 and -AAAA-, 2) by
0.02 eV. [Using the PAW-PBE functional (details in the Sup-
porting Information), computed graphite is lower in energy
than diamond, but the optimized graphite geometry was un-
realistic—there is a big discrepancy from experiment in the
c lattice parameter. The C�C computed bond lengths using
both methods are reasonable.] Plane-wave-based DFT pro-
grams tend to have problems calculating correct dispersion

Figure 4. a) Histogram of distances from an atom in the 2D Sn square lat-
tice (for Sn nearest neighbor separation of 2.881 �); b) Histogram of dis-
tances from an atom in the 3D b-Sn lattice.
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energies; this is most likely the reason for this small discrep-
ancy with experiment. The phonon dispersion calculation of
graphite shows clearly two low frequency branches corre-

sponding to C�C interactions between layers and also to a
sliding of the layers (see the Supporting Information).

Figure 5. The formation energy per atom (see text) for C, Si, Ge, Sn and Pb in the 29 different starting geometries shown in Figures 1–3 (structure num-
bers refer to these figures). Note that there is no entry for some geometries; these rearrange to another more stable structure.

Figure 6. The relative formation energies (eV per atom) for C, Si, Ge, Sn, and Pb in the 29 different starting geometries shown in Figures 1–3. The refer-
ence point is the most stable computed structure, which is 3, the diamond structure for C (see text), also for Si, Ge, and Sn. For Pb, the most stable com-
puted structure is fcc, 8.
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Carbon seeks out a lower coordination in 2D as well. The
2D graphene structure, 10, with CN=3 is low energy
(0.04 eV less favorable than graphite). Zero-point energies
are not included in our energies. We do not want to make
much of this energy in view of our mistrust of dispersion
force calculations with the DFT functional used. A graphene
layer is in reality a little less stable than the same layer in
graphite. The experimental range for the exfoliation energy
of graphite extends from 35 to nearly 60 meV per atom.[7]

The theoretical calculations (semiempirical and ab initio)
for the exfoliation energy of graphite are even more varia-
ble; ranging from almost zero to more than 170 meV per
atom.[8]

Carbon nanotubes[9] have garnered much attention over
the last 20 years. So has a more difficult to characterize 1D
structure, carbyne (a polyacetylenic valence structure, some-
times called karbin).[10,11, 12] It is not surprising that the 1D
linear chain (carbyne), 19 CN= 2, and the (3,3) single-
walled nanotube (SWNT), 22 CN=3, are the lowest energy
1D carbon species. We did not study other nanotubes. Were
we to do so, it is likely that as we increase the diameter of
the nanotube, the ring strain would diminish and the forma-
tion energy would approach graphene. Still, these 1D struc-
tures are less stable than graphene (2D) and graphite/dia-
mond (3D). Notice the CN trend through dimensions—1D
CN=3, 2D CN= 3, and 3D CN=3 or 4 are the preferred
structures.

Other carbon structures occur at very high energy. There
are glimpses of chemical relevance here and there. Consider
the two simple 1D hypothetical carbon structures, 23 and 24.
Both are extended spirocycles (CN= 3 and 4), but 23 con-
tains a tetrahedral carbon, 24 a square-planar carbon. A
simple 908 twist results in a 0.5 eV per C energy stabilization
favoring the linear polymer with tetrahedral carbon, 23. This
is hardly surprising given what we know of carbon chemis-
try, and the absence of special factors stabilizing square-
planar carbon (a geometry close to the heart of one of
us[13,14]).

Carbon is the only one of the Group 14 elements known
to have metastable, kinetically persistent 1D (carbyne, nano-
tubes) and 2D (graphene) allotropes (and 0D, as well,
counting the fullerenes). That fact is a consequence of barri-
ers to oligo- and polymerization (for instance, carbyne to
graphene) and bond reorganization. Our computed barrier
to transformation from hexagonal diamond to graphite is
�0.5 eV per carbon (11.6 kcal mol�1 per carbon), a subject
to which we will return. This situation changes dramatically
as we move down Group 14.

Silicon : The immediate and striking feature of the energies
in Figure 5 is that all of the 3D Si structures (black triangles)
computed are within 0.5 eV per Si of each other. Quite a
difference from carbon! The fall from grace of the graphitic
structures for Si (one of them is the least stable of the nine
3D structures) is not surprising. For carbon, the stability of
graphite arises from partial multiple or p-bonding, a degree
of aromatic stabilization. We know that after the second

period multiple bonding is worth much less energetical-
ly.[6,15,16] For instance, there are many known unsaturated
carbon compounds with p-bonding, with double, triple, and
benzenoid bonds. However, this type of bonding is rare for
Si. Chemists have to work very hard to make p-bonded sili-
con compounds; these are stable only when one engineers
(using substituents) steric barriers to prevent reactivity.[17, 18]

All this is consistent with the relatively high energy of a
graphitic silicon structure.

Diamond-type Si, four-coordinate, has the lowest comput-
ed formation energy (�5.35 eV per Si); experimentally this
is the global minimum as well. Our computed diamond
structure Si�Si distance is 2.34 � (experimental 2.35 �).
Only 0.2 eV above the diamond structure are b-tin (4) and
simple hexagonal (6) alternatives. The b-tin structure (4), as
mentioned earlier, should be considered 4+ 2- or six-coordi-
nate; the sh-type (6) six- or eight-coordinate (more below
on this structure). The b-Sn-type Si has two kinds of Si�Si
bonds (four at 2.47 � in a flattened tetrahedron, two axial
at 2.60 �). Clearly, this structure is closer to six- than four-
coordinate.

We wondered how big the barrier would be for the rear-
rangement of these metastable phases of Si to diamond (or
vice versa). For Si (and Ge), this transformation from dia-
mond-type (CN 4) to the metallic, tetragonal b-Sn-type
structure (CN 6) can be effected experimentally by subject-
ing them to pressures of 200 (Si) and 120 kbar (Ge) along
the c axis.[19] The transition from diamond-type a!b-Sn-
type structures involves a deformation preserving the c axis,
as shown in Figure 7 for two unit cells. Note the proportions
of the unit cell change dramatically. The barrier to transfor-
mation from the a to b-Sn-type structure we compute for Si
is small, only 0.1 eV per Si.

The relatively low energy of the b-Sn structure for ele-
mental Si is not surprising, given that there are six-coordi-
nate molecular compounds of Si, but the relatively low

Figure 7. A path for transforming an a-Sn structure into the b-Sn struc-
ture through dilation in the ab plane, and concomitant compression along
the c axis. In this way, the b-Sn-type (
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� 2) supercell can be ob-
tained.
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energy of the simple hexagonal structure deserves some
comment. When optimized, simple hexagonal Si has two
types of Si bonds (six in plane at 2.62 �, two axial at
2.45 �). Both distances are longer than a typical Si�Si single
bond (2.35 �), which would be expected. Interestingly, the
two axial bonds are shorter, but the axial–equatorial bond
length differential is too small for this structure to be called
anything but eight-coordinate.

The trend in energy for 2D Si geometries is different from
carbon. First, all the structures are within 1 eV of each
other. Second, they are on average higher in energy than
the 3D Si structures. We find that two-layer “graphitic” sili-
con, 11 (the reason for the quotes will be given below), is
the favored 2D structure (with structure 17 right behind it).
This is not surprising given that Si prefers to be four-coordi-
nate—the two-layer “graphitic” structure 11, not 12 provides
this coordination, albeit not with ideal angles. The reasons
for Si disfavoring three-coordination will be discussed in
detail in the next section. In structure 11, (Figure 8 top)

there are three Si�Si bonds at 2.36 � and one, vertical, at
2.39 �. The local geometry (C3v) is that of a distorted tetra-
hedron with some Si-Si-Si angles of 908. The vertical dis-
tance in the two-layer C is 3.26 � (Figure 8 bottom), which
is similar to the layer distance in real graphite (3.35 �).

The distortion at Si in structure 11 is somewhat analogous
to that found at Si in the extended structure of CaAl2Si2.

[20]

A molecular model—truncating the element lattice and
“passivating” the dangling valences with hydrogens—can
provide insight into the cost of such a distortion: Figure 9
shows the energy of E ACHTUNGTRENNUNG(EH3)4 (E= C, Si, Ge, Sn, or Pb) for a
deformation maintaining C3v symmetry. The only variable in
this potential energy surface is the angle. Clearly, Group 14
elements in symmetrical molecular models such as the ones
chosen here prefer a perfect tetrahedron (Td) to a distorted
one (C3v). The energetic cost of this transformation (mea-
sured, for instance by the difference in energy for a=

109.5!a=908) generally decreases down Group 14: C
(2.5 eV)>Si�Ge (0.9 eV)>Sn (0.5 eV)>Pb (0.3 eV).

Structure 11 is thus a compromise. If the two graphene-
like sheets of Si were separated by an infinite (hypothetical)
distance, they would be �0.8 eV per Si above the a-Si struc-
ture (estimated from the energy of formation of a single
graph ACHTUNGTRENNUNGene-like sheet of structure 10, computed as �4.55 eV
per Si). In 11, the two graphene sheets collapse, forming an
extra bond between sheets; for Si much is gained from four-
coordination. The strain resulting (0.9 eV per Si from the
molecular model) is worth it.

Note the great difference between C and Si for the two-
layer graphitic structures. For C, no bonds are formed be-
tween layers, only dispersion forces hold them together. For
Si, the system forms as many single bonds as it can vertical-
ly. The next section explores this phenomenon down the
group.

Structure 12, the other graphitic polytype, has two differ-
ent kinds of Si atoms—a three-coordinate Si with three axial
Si�Si bonds at 2.36 � and a four-coordinate Si with three
axial Si�Si bonds at 2.36 � and one vertical Si�Si at 2.40 �.
As expected, it is at higher energy than 11; collapse of the
two layers makes only half the atoms four-coordinate.

The square-planar and kagome nets (13, 14) are high
energy for Si; they are far away from the preferred tetrahe-
dron even though they are four-coordinate. In a molecular
SiACHTUNGTRENNUNG(SiH3)4 model it costs 4.5 eV (see the Supporting Informa-
tion) to go from tetrahedral to square-planar. The disfavor-
ing of planar four-coordinate structures is greater for C than
for Si; this shows up in molecular models as well. Two other
2D structures of relatively low energy are 16 and 17; in
these, Si is five- and six-coordinate, respectively. While dis-
torted, these feature a coordination number that is not un-
typical for Si.

Monolayer graphene-type Si (10) is substantially higher in
energy per Si than two-layer 11, a great contrast to the
carbon case, There is some p-bonding in 10—notice the Si�

Figure 8. The optimized two-layer “graphitic” Si and C, starting with
structure 11.

Figure 9. The potential energy surface of the transformation from a per-
fect tetrahedron Td to a distorted C3v tetrahedron for E ACHTUNGTRENNUNG(EH3)4, where
E=C, Si, Ge, Sn, or Pb.
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Si bond length of 2.23 � compared to 2.35 � in diamond-
type Si, a shortening comparable to what happens for C.
However, while structure 11 for C consists of essentially two
graphene sheets bound by weak dispersion forces, 11 for Si,
as we saw, collapses to a strained four-coordinate Si struc-
ture. Though p-bonded, a graphene-like Si sheet would
much rather gain a fourth bond, even if the price of strain
energy must be paid.

The 1D Si structures are even less stable than the 2D
ones. The lowest energy one—the hexagonal pipe 28—as
well as 27 and 29 nearby in energy, are all four-coordinate.
Clearly, that coordination is sought, even at the cost of un-
usual distortion. No doubt one-dimensional pieces of the di-
amond structure, even if they contain lower coordination
terminations on the outside, could compete with these
strained chains.

Given the current interest in graphenes, we turn next to a
detailed analysis of single and multilayer graphene-like
structures for all the Group 14 elements.

Graphene and graphitic structures in Group 14 : The ability
to make and study multi- and monolayer graphene struc-
tures has engendered much theoretical work.[21,22] A chemi-
cal perspective on what one would expect as one moves
down Group 14 is useful as one looks at much speculation
in the literature.

In Figure 10, we show the basic structures of interest, al-
ready included in our study, but useful to group together
here. Structure 1 is the -ABAB- 3D graphite structure, struc-
ture 2 a simple hexagonal polytype, -AAAA- stacking, 10 is
the 2D single layer graphene, 11 a two-layer -AA- stacked
graphene, and 12, a two-layer -AB- stacked graphene.
Figure 10 shows the formation energies of these 3D and 2D
geometries from the atoms.

The essential piece of chemical intuition that is needed to
make sense of the energetics is that p-bonding in Group 14,
ideal in all the graphene structures, is a good thing only for
carbon, and not for Si, Ge, Sn, and Pb. For these last ele-
ments, four-coordinate structures (of which diamond is ar-
chetypical) are favored. The reasons for this remain under
discussion;[15,16] we think they are to be found in the poor p-
type overlap between neighboring np orbitals at the distance
imposed by normal s bonding. To be specific, the p overlap
for the 2p orbitals of C at 1.42 � is much bigger than for the
3p orbitals of Si at 2.34 �. The result of this is shown in the
schematic orbital interaction diagram (Scheme 1). Greater

overlap leads to more stabilization (a thermodynamic crite-
rion). The same reduced p overlap in Si=Si double bonds
leads to higher reactivity as well ; the low-lying p*, the high-
lying p orbitals are likely to make Si=Si highly reactive to
bases and acids.

This rough notion (for an elaboration, see referen-
ces [15, 16]) is supported by the energetics, already men-
tioned, of diamond, 3 versus graphites 1 and 2 : similar in
energy for C, quite different in energy for Si, Ge, Sn, and
Pb.

The stability of C graphene layers, contrasted with the in-
stability of corresponding Si, Ge, Sn, and Pb layers, lead to
very different behavior of such layers on aggregation. The
first piece of evidence for this is in the calculated equilibri-
um structures of the graphites 1 and 2. The computed E�E
inter- and intralayer distances in 1 are listed in Table 1. Note
the gigantic difference between an intralayer bond (1.42 �)
and a van der Waals separation (3.32 �) for C, while all the
other Group 14 graphites have equalized intra- and interlay-
er distances. They have essentially collapsed to 3+2 or five-
coordinate structures with bonds between layers.

Figure 10. The energetic and schematic structural landscapes of Group 14
graphite (-ABAB- and -AAAA-), graphene-type (single layer, -AA- and
-AB- two layer stacked) structures.

Scheme 1. A schematic of the p-type overlaps for C and Si planar sys-
tems.

Table 1. The E�E distances in -ABAB- graphite-type structure.

Intralayer E�E
distance [�]

Interlayer E�E
distance [�]

C 1.42 3.32
Si 2.34 2.48
Ge 2.51 2.61
Sn 2.88 2.93
Pb 3.03 3.01
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The collapse is likely activation-less. We simulated the
process of bringing together 2D graphene-type (10) layers
together as shown in Figure 11. Note the weak (dispersion

force driven) aggregation of the C layers, and the pro-
nounced activation-less bond-forming aggregation of the Si,
Ge, Sn, Pb structures. To put it as directly as possible—
graph ACHTUNGTRENNUNGene-like sheets of Si, Ge, Sn, and Pb are most unlikely
to have an independent existence. If they are to be found,
they will have to be intercalated by other atoms or mole-
cules, or otherwise protected from reacting with each other.
Such multilayer Si, Ge, Sn, and Pb graphenes, if made, will,
of course, be interesting, just because they will self-condense
to a 3D structure or to multilayer approximations thereto.

We also looked at the band structures of the various
graph ACHTUNGTRENNUNGenes. The graphene-type Si structure is semimetallic,
similar to C graphene. The Ge, Sn, and Pb structures, how-
ever, are metallic, with a s* band crossing the Fermi level.
The corresponding band structures are shown in the Sup-
porting Information.

Germanium : Elemental germanium crystallizes in the dia-
mond-type lattice at 1 atm and this is also computed to be
its lowest energy structure. Ge is a metalloid with a similar
electrical resistivity to Si at room temperature, but with a
much smaller band gap. Its melting and boiling points and
bond energy[19] (shown in Table 2) are also smaller than for
Si, and this trend continues for Sn and Pb, which are both
soft, low-melting-point metals. At pressures above 12 GPa,
Ge crystallizes in a b-Sn-type structure. This transformation
leads to a change in coordination from four to six. Dia-
mond-type Ge has four equal Ge�Ge bonds at 2.45 �; b-tin-
type Ge has two kinds of Ge�Ge bonds (four at 2.64 � in a

flattened tetrahedron, two at 2.79 �). Note the difference in
axial/equatorial distance ratio from Si; in Si the axial bonds
are shorter. We computed the potential barrier for the trans-
formation from diamond to b-tin-type Ge (shown in the
Supporting Information) to be only 0.15 eV per Ge.

In its computed structural preferences, germaniumACHTUNGTRENNUNGemerges as remarkably similar to silicon. Note how closely
the energies of various Ge structures follow their Si ana-
logues. The diamond lattice is the most stable; almost all of
the 3D structures are more stable than the 2D ones, and the
most stable 2D structures are more stable than all of the 1D
structures considered. Ge clearly prefers to be four-coordi-
nate, as does Si. However, five-, six-, and higher CN struc-
tures are not penalized much energetically.

Tin : Tin, along with carbon, is the most interesting of the
Group 14 elements. It has long been known that two stable
Sn allotropes—grey tin or diamond-type (3, a-Sn) and white
tin (4, b-Sn) are found at ambient temperature and pressure.
The transformation between the two phases takes place at
12 8C at P=1 atm. Grey or a- tin is four-coordinate with
four Sn�Sn bonds at 2.81 �; white or b- tin is six-coordinate
and has two kinds of Sn�Sn bonds (four at 3.00 � in a flat-
tened tetrahedron, two at 3.13 �). A structural distortion
along the c direction of the b-Sn lattice leads to the dia-
mond-type and vice versa. We computed the energy barrier
between a and b tin as 0.20 eV per Sn for transformation by
this mechanism. a-Sn is computed as 0.04 eV per Sn more
stable than the b-isomer.

The computed energetics shown in Figures 5 and 6 sug-
gests that a number of different tin allotropes may be com-
petitive in energy. If we use a-tin (3) as the reference struc-
ture, structures 4–9 are within 0.02 eV of a-Sn. Clearly,
graphitic Sn structure (1 and 2) are the highest energy spe-
cies and also have the lowest coordination (CN=3+2 or 3
and 5), but even they are <0.05 eV/Sn above a-Sn. The very
highly coordinated structures (CN 12), 8 (fcc, Sn�Sn 3.32 �)
and 9 (hcp, Sn�Sn 3.32 �), are also competitive with a- and
b-Sn.

The strong discrimination against p-bonded three-coordi-
nate structures we noted for Si continues for Sn, So 10, a
single graphene-like sheet, is less stable than the collapsed,
strained four-coordinate 11. All 2D and 1D structures are
less stable than the 3D ones.

Let�s return to the essential finding for Sn; aside from a
real dislike for a CN= 3, all 3D structures have nearly the
same energy. We are investigating the barriers between the
various structures; the preliminary conclusion is that they
are small. The conclusion is not surprising; Sn is a low-melt-

Table 2. The melting points, boiling points, and E�E bond energies of
Group 14 elements.

C Si Ge Sn Pb

melting points [K] 4373 1693 1218 505 600
boiling points [K] – �3553 3123 2896 2024
E�E bond energies [eV] 3.69 2.35 1.95 1.57 1.02

Figure 11. The relative energy (relative to the corresponding infinitely
separated structure) of bringing 2D graphene-type sheets (10) together
to form the -AAAA- graphite polytype.
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ing solid, with a melting point of 505 K. Having all ordered
structures close to each other in energy is a hint that one is
dealing with a material close to a liquid. We will return to
this perspective.

Lead : Let us now come back to the starting point for our
study, Pb structures. Pb clearly prefers high coordination.
The difference in energy between fcc (8, the most stable
structure) and graphite (1 and 2) is only 0.40 eV; the rest of
the 3D structures are found in between the two energetic
extremes. We plotted the potential energy surface (see the
Supporting Information) for the transformation from bcc (7)
to fcc (8); note that an fcc structure is identical to a bct
structure with c/a=

ffiffiffi

2
p

. The energy of activation for this
Bain transformation is zero.[23,24] The twelve Pb�Pb near
neighbor separations in fcc Pb are computed as 3.45 �,
while the eight Pb�Pb bond lengths in the bcc structure are
3.35 �.

By way of an oversight in our 2D computations, we came
across an interesting trend for Pb. Optimizations of Pb in
the structure 15 (corrugated square sheet) geometry led to a
structure like 17 (trigonal prism sheet), but not identical to
that shown in Figure 2. Instead, the bridging atoms migrated
to fourfold sites; the result is an eight-, not a six-coordinate
species. Subsequent optimizations of this eight-coordinate
Pb variant of 17 led us back to the fcc structure.

Liquids and the problems of defining first coordination
numbers in them : What we saw in our calculations of or-
dered crystalline structures as we go from C to Pb is pretty
simple:

1) The preferred structures move from low (3, 4) coordina-
tion number to high (12).

2) The energies of all the possible structures come closer to-
gether, especially for Sn and Pb.

Clearly the latter observation is consistent with approach
to a liquid. The relatively low melting points of Sn (505 K)
and Pb (600 K) agree. The coordination number preferences
are likely to extend to the liquid state. Let us then approach
a description of the liquid state of these elements.

Given relative local order and long-range disorder, dis-
tance correlation functions are essential tools in the descrip-
tion of liquids. The literature defines a variety of correlation
and distribution functions; let�s try for a clear definition.
The pair distribution function g(r) is defined as the probabil-
ity of finding another atom a distance r from the reference
atom, relative to the random average probability; g(r)!1 as
r!1, and g(r)!0 at r=0. A typical g(r) for liquid Pb
(from our calculations) is sketched in Figure 12.

A radial distribution function (RDF) is 4pr21g(r), in
which 1 is the average number density, N/V, N= number of
particles, V= volume. This is the number of atoms or mole-
cules in a spherical shell around r. The value of g(r) can be
computed or can be extracted (with some work) from X-ray
or neutron diffraction experiments.[25]

It is clear that the number of nearest neighbors in a
liquid, to the extent that it can be defined, is related to the
area under the first peak in 4pr21g(r). To get more quantita-
tive, and estimate an effective first coordination number in a
liquid, has not been easy. At least four methods to compute
the coordination number from the radial distribution func-
tion may be found in the literature:[26,27] These are: A) a
“completion” of the first peak using the function rg(r) about
a radius of symmetry; B) a similar symmetrization using the
function 4pr21g(r) about its first maximum; C) a decomposi-
tion of the function 4pr21g(r) into first, second, and so forth,
shells; and D) integrating the function 4pr21g(r) to the first
minimum in the radial distribution function. The four meth-
ods are shown schematically in Figure 13.

Mikolaj and Pings[27] give a detailed comparative analysis
of these four methods for computing the coordination
number. These is much variation: for liquid argon, they ob-
tained CN of 5.3 by method (A), 6.0 by (B), 6.6 by (C), and
7.5 by (D). What is worse, people are not very conscientious
in specifying which method they use.

For the elements of interest to us, the absolute numbers
are (to give a generous characterization) ambiguous.
Cahoon[28] calculated first coordination numbers for liquid
Si, Ge, Sn, and Pb as 4.7, 5.0, 6.7 and 7.3, respectively.
Tao[29] predicted the coordination numbers for liquid Si, Ge,
Sn, and Pb as 7.9, 7.8, 9.2 and 10.5. Swalin,[30] in his fluctua-
tion theory of diffusion, used a value of ten for the first co-
ordination number for Sn, while Hines et al.[31] suggest a
value of six for Sn, based on the relationship between the
empty volume fraction and the number of nearest neighbors
in solid metals to the liquid state. In Group 14, even as ev-
eryone agrees that the coordination numbers rise from
liquid Si to Pb, there clearly is substantive disagreement on
the CN values.

In a recent study, Ganesh and Widom[32] provided good
computational evidence for a liquid-to-liquid phase transi-

Figure 12. Pair distribution function of liquid Pb at 1500 K.
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tion in silicon. They find a low-density low-coordinate
(CN =4.2 at 1182 K by method D) semimetallic liquid coex-
isting with a high-density metallic liquid with higher CN
(5.6).

Simulating Group 14 liquid structures : Our own primitive
approach to the liquid state of Si, Ge, Sn, and Pb uses a
high-temperature molecular dynamics calculation. MD cal-
culations were performed for Si, Ge, Sn, and Pb at 3000,
2000, 1500, and 1500 K, respectively; the temperatures were
chosen to ensure that the elements were in the liquid state.
The starting structures (over 200 atoms in supercell) were
ordered diamond Si and Ge, b-Sn, and fcc-Pb. Next, we
evaluated the radial distribution function, g(r) from the
liquid configurations obtained by MD calculation (details in
the Supporting Information). The parameters obtained, in-
cluding the temperature (T in K) of the MD calculation,
RDF curve information (r0 and rmin in �), the corresponding
atomic density (1= N/V in ��3) and calculated coordination
number (CNcalcd) are shown in Table 3.

First coordination numbers were calculated by integrating
the radial distribution function 4pr21g(r) to the first mini-
mum for liquid Si, Ge, Sn, and Pb (method D of Figure 13).
The values obtained are 5.1, 7.1, 8.7, and 10.4, respectively.
As might have been anticipated from the review of the liter-
ature above, the trend is as expected, but these values are
not exactly in agreement with other studies. From experi-
ment,[33] the coordination numbers of Si, Ge, Sn, and Pb are
6.4, 6.8, 10.9, and 10.9, respectively. The calculated percent-
age deviation from the experimental values is 20.3 % (Si),
4.4 % (Ge), 20.2 % (Sn), and 4.6 % (Pb). Such an outcome
falls within the expected range of deviation for many liquid

metals.[34] In the work of Hines et al. ,[34] coordination num-
bers were predicted for 39 liquid metals, with average devia-
tions of 13 or 23 % from the literature values, depending on
the method of calculation. Note that we studied liquid Si
only at one temperature and pressure; thus there is no way
we could pick up the fine points of the liquid Si structure
found by Ganesh and Widom.[25]

Concluding Comments

As expected, coordination number is a determining factor in
the crystalline (and liquid phase) structures of Group 14 ele-
ments, and the preferred coordination of extended struc-
tures is closely related to the bonding preferences (call them
loosely the valence of the atom) of discrete molecules con-
taining the atom.

So carbon not only favors four-coordination, but also is
quite happy with p-bonding, allowing three- and even two-
coordination to compete. Highly coordinated (CN>4)
carbon molecules are rare, and that carries over to prefer-ACHTUNGTRENNUNGences in extended structures. For every other Group 14 ele-
ment p-bonding is neither thermodynamically nor kinetical-
ly a good thing.

An immediate consequence of the above regularities, very
much chemical in origin, is the destabilization of simple
graph ACHTUNGTRENNUNGene sheets (relative to higher coordination structures),
and the likely collapse of multigraphene layered arrays to
four-coordinate structures.

Si and Ge are quite similar to each other, even as they
are different from C. Higher coordination structures become
competitive for these elements. Sn and Pb favor still higher
coordination; for these last elements all higher coordination
structures are roughly at equal energy. This, of course, is a
harbinger of their low melting point. The Group 14 liquid
structures we simulate in molecular dynamics calculations
show the expected effective first coordination number in-
crease down Group 14.

In a future paper we will explore how this structural land-
scape evolves as the pressure changes, and as we move to
more ionic structures.

Figure 13. The four methods for computing the coordination number
(from reference [27])

Table 3. Computed parameters from the simulation of liquid states of Si,
Ge, Sn, and Pb: liquid temperature (T) in molecular dynamics calcula-
tions, approximate r0 and rmin position from the RDF curve, correspond-
ing atomic density (1= N/V), and calculated coordination number
(CNcalcd) and experimental coordination number (CNexptl), and deviation.

T
[K]

r0

[�]
rmin

[�]
1ACHTUNGTRENNUNG[��3]

CNcalcd CNexptl
[33] Deviation

[%][a]

Si 3000 1.70 3.50 0.0507 5.1 6.4 20.3
Ge 2000 1.90 4.00 0.0444 7.1 6.8 4.4
Sn 1500 2.20 4.20 0.0382 8.7 10.9 20.2
Pb 1500 2.50 4.50 0.0345 10.4 10.9 4.6

[a] Percentage deviation= [(CNcalcd�CNexptl)/CNexptl] � 100, in which
CNcalcd and CNexptl are the calculated and experimental values, respective-
ly.
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Computational Methods

In each case the structure was optimized in its own space group. The en-
ergies are given relative to the lowest energy spin state of each atom.
The calculations are based on the plane wave/pseudopotential approach
using the VASP (Vienna Ab-initio Simulation Package)[35�, 3637] computer
program, employing the local density approximation (LDA) and the pro-
jected-augmented wave (PAW)[38, 39] formalism. The energy cutoff used
for plane waves was 500 eV. A Monkhorst Pack grid of k-points was
used. In order to model one-dimensional structures, as VASP is a three-
dimensional computational method, we inserted a large vacuum layerACHTUNGTRENNUNG(�15 �) in the a and b direction, while still allowing all unit cell parame-
ters to vary. For the two-dimensional structures a vacuum layer was in-
serted in the c direction. For MD simulation, the only G k point were
conducted at the energy cutoff of 400 eV. A 3 fs time step is utilized.
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